Using Congruence Theorems

8.1 Time to Get Right
Right Triangle Congruence Theorems 709

8.2 CPCTC
Corresponding Parts of Congruent Triangles are Congruent 727

8.3 Congruence Theorems in Action
Isosceles Triangle Theorems 735

8.4 Making Some Assumptions
Inverse, Contrapositive, Direct Proof, and Indirect Proof 743

The Penrose Triangle is one of the most famous “impossible objects.” It can be drawn in two dimensions but cannot be created in three dimensions.
Chapter 8 Overview

This chapter covers triangle congruence, including right triangle and isosceles triangle congruence theorems. Lessons provide opportunities for students to explore the congruence of corresponding parts of congruent triangles as well as continuing work with proof, introducing indirect proof, or proof by contradiction. Throughout, students apply congruence theorems to solve problems.

<table>
<thead>
<tr>
<th>Lesson</th>
<th>TEKS</th>
<th>Pacing</th>
<th>Highlights</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>2.B</td>
<td>1</td>
<td>This lesson explores four right triangle congruence theorems: The Hypotenuse-Leg, Leg-Leg, Hypotenuse-Angle, and Leg-Angle Congruence Theorems. Questions ask students to explore each theorem using algebra and constructions and prove the theorems. Students also apply the theorems to solve problems.</td>
</tr>
<tr>
<td>8.2</td>
<td>6.D</td>
<td>1</td>
<td>In this lesson, students investigate that the corresponding parts of congruent triangles are congruent (CPCTC). Questions ask students to prove the Isosceles Triangle Base Theorem and its converse as well as apply CPCTC.</td>
</tr>
<tr>
<td>8.3</td>
<td>2.B</td>
<td>1</td>
<td>In this lesson, students prove several theorems related to isosceles triangles using drawings and two-column proofs.</td>
</tr>
<tr>
<td>8.4</td>
<td>4.D</td>
<td>1</td>
<td>This lesson introduces inverses and contrapositives of conditional statements as well as proof by contradiction, or indirect proof. Students prove the Hinge Theorem along with its converse.</td>
</tr>
</tbody>
</table>
Skills Practice Correlation for Chapter 8

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Problem Set</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td></td>
<td>Vocabulary</td>
</tr>
<tr>
<td>Right Triangle Congruence Theorems</td>
<td>1 – 4</td>
<td>Mark triangle sides to make congruence statements true by the HL Congruence Theorem</td>
</tr>
<tr>
<td></td>
<td>5 – 8</td>
<td>Mark triangle sides to make congruence statements true by the LL Congruence Theorem</td>
</tr>
<tr>
<td></td>
<td>9 – 12</td>
<td>Mark triangle sides to make congruence statements true by the HA Congruence Theorem</td>
</tr>
<tr>
<td></td>
<td>13 – 16</td>
<td>Mark triangle sides to make congruence statements true by the LA Congruence Theorem</td>
</tr>
<tr>
<td></td>
<td>17 – 22</td>
<td>Determine if there is enough information to prove triangles congruent</td>
</tr>
<tr>
<td></td>
<td>23 – 26</td>
<td>Use right triangle congruence theorems to solve problems</td>
</tr>
<tr>
<td></td>
<td>27 – 30</td>
<td>Write two-column proofs using right triangle congruence theorems</td>
</tr>
<tr>
<td>8.2</td>
<td></td>
<td>Vocabulary</td>
</tr>
<tr>
<td>Corresponding Parts of Congruent Triangles are Congruent</td>
<td>1 – 12</td>
<td>Write two-column proofs using CPCTC</td>
</tr>
<tr>
<td></td>
<td>13 – 18</td>
<td>Use CPCTC to solve problems</td>
</tr>
<tr>
<td>8.3</td>
<td></td>
<td>Vocabulary</td>
</tr>
<tr>
<td>Isosceles Triangle Theorems</td>
<td>1 – 6</td>
<td>Write isosceles triangle theorems to justify statements</td>
</tr>
<tr>
<td></td>
<td>7 – 12</td>
<td>Determine unknown values given isosceles triangle diagrams</td>
</tr>
<tr>
<td></td>
<td>13 – 16</td>
<td>Use isosceles triangle theorems to complete two-column proofs</td>
</tr>
<tr>
<td></td>
<td>17 – 22</td>
<td>Use isosceles triangle theorems to solve problems</td>
</tr>
<tr>
<td>8.4</td>
<td></td>
<td>Vocabulary</td>
</tr>
<tr>
<td>Inverse, Contrapositive, Direct Proof, and Indirect Proof</td>
<td>1 – 8</td>
<td>Write the converse of conditional statements and determine if the converse is true</td>
</tr>
<tr>
<td></td>
<td>9 – 16</td>
<td>Write the inverse of conditional statements and determine if the inverse is true</td>
</tr>
<tr>
<td></td>
<td>17 – 24</td>
<td>Write the contrapositive of conditional statements and determine if the contrapositive is true</td>
</tr>
<tr>
<td></td>
<td>25 – 28</td>
<td>Write indirect proofs to prove statements</td>
</tr>
<tr>
<td></td>
<td>29 – 32</td>
<td>Use the Hinge Theorem to write conclusions about triangles using inequalities</td>
</tr>
</tbody>
</table>
8.1

Time to Get Right
Right Triangle Congruence Theorems

LEARNING GOALS
In this lesson, you will:
• Prove the Hypotenuse-Leg Congruence Theorem using a two-column proof and construction.
• Prove the Leg-Leg, Hypotenuse-Angle, and Leg-Angle Congruence Theorems by relating them to general triangle congruence theorems.
• Apply right triangle congruence theorems.

ESSENTIAL IDEAS
• The Hypotenuse-Leg Congruence Theorem states: “If the hypotenuse and leg of one right triangle are congruent to the hypotenuse and leg of a second right triangle, then the triangles are congruent.” Using the Pythagorean Theorem, this situation is directly related to SSS.
• The Leg-Leg Congruence Theorem states: “If two legs of one right triangle are congruent to two legs of a second right triangle, then the triangles are congruent.” This situation is directly related to SAS.
• The Hypotenuse-Angle Congruence Theorem states: “If the hypotenuse and acute angle of one right triangle are congruent to the hypotenuse and acute angle of a second right triangle, then the triangles are congruent.” This situation is directly related to AAS.
• The Leg-Angle Congruence Theorem states: “If the leg and acute angle of one right triangle are congruent to the leg and acute angle of a second right triangle, then the triangles are congruent.” This situation is directly related to AAS.

KEY TERMS
• Hypotenuse-Leg (HL) Congruence Theorem
• Leg-Leg (LL) Congruence Theorem
• Hypotenuse-Angle (HA) Congruence Theorem
• Leg-Angle (LA) Congruence Theorem

TEXAS ESSENTIAL KNOWLEDGE AND SKILLS FOR MATHEMATICS
(2) Coordinate and transformational geometry.
The student uses the process skills to understand the connections between algebra and geometry and uses the one- and two-dimensional coordinate systems to verify geometric conjectures. The student is expected to:

(B) derive and use the distance, slope, and midpoint formulas to verify geometric relationships, including congruence of segments and parallelism or perpendicularity of pairs of lines
(3) Coordinate and transformational geometry. The student uses the process skills to generate and describe rigid transformations (translation, reflection, and rotation) and non-rigid transformations (dilations that preserve similarity and reductions and enlargements that do not preserve similarity). The student is expected to:

(B) determine the image or pre-image of a given two-dimensional figure under a composition of rigid transformations, a composition of non-rigid transformations, and a composition of both, including dilations where the center can be any point in the plane.

(5) Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures. The student is expected to:

(A) investigate patterns to make conjectures about geometric relationships, including angles formed by parallel lines cut by a transversal, criteria required for triangle congruence, special segments of triangles, diagonals of quadrilaterals, interior and exterior angles of polygons, and special segments and angles of circles choosing from a variety of tools.

(B) construct congruent segments, congruent angles, a segment bisector, an angle bisector, perpendicular lines, the perpendicular bisector of a line segment, and a line parallel to a given line through a point not on a line using a compass and a straightedge.

(C) use the constructions of congruent segments, congruent angles, angle bisectors, and perpendicular bisectors to make conjectures about geometric relationships.

(6) Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart. The student is expected to:

(B) prove two triangles are congruent by applying the Side-Angle-Side, Angle-Side-Angle, Side-Side-Side, Angle-Angle-Side, and Hypotenuse-Leg congruence conditions.

(C) apply the definition of congruence, in terms of rigid transformations, to identify congruent figures and their corresponding sides and angles.

Overview

Four right triangle congruence theorems are introduced: Hypotenuse-Leg, Leg-Leg, Hypotenuse-Angle, and Leg-Angle.

Students are asked to prove each right triangle congruence theorem. The Pythagorean Theorem in conjunction with the AA Similarity Postulate is used to establish the third side of each triangle congruent in the Hypotenuse-Leg Congruence Theorem. Either SSS or SAS can be used to conclude the triangles are congruent. Students may need a few hints to guide them through this proof. This theorem is proved using a two-column format, a construction proof, and transformations. The remaining right triangle theorems, LL, HA, and LA are proven through the use of transformations, mapping a triangle onto itself. After proving the right triangle congruence theorems, students determine if there is enough information to prove two triangles congruent in different situations and identify the congruence theorem when appropriate.
Warm Up

1. Given: GE || KV
 Is \(\triangle GVK \cong \triangle KEG \)? Explain.
 There is not enough information to determine if the triangles are congruent. It can be determined that \(GK \cong GK \) using the Reflexive Property and \(\angle EGK \cong \angle VKG \) because they are alternate interior angles, but that is not enough information to conclude triangle congruency.

2. Given: WC || NB
 WC \(\cong \) NB
 Is \(\triangle CWN \cong \triangle BNW \)? Explain.
 Yes, \(\triangle CWN \cong \triangle BNW \) by the SAS Congruence Theorem. It can be determined that \(WN \cong WN \) using the Reflexive Property and \(\angle TRC \cong \angle ECR \) because they are alternate interior angles.

3. Given: \(\overline{RE} \cong \overline{CT} \)
 Is \(\triangle REC \cong \triangle CTR \)? Explain.
 Yes, \(\triangle REC \cong \triangle CTR \) by the SSS Congruence Theorem. It can be determined that \(RC \cong RC \) using the Reflexive Property and \(RT \cong CE \) using the Pythagorean Theorem.
Time to Get Right
Right Triangle Congruence Theorems

LEARNING GOALS
In this lesson, you will:
• Prove the Hypotenuse-Leg Congruence Theorem using a two-column proof and construction.
• Prove the Leg-Leg, Hypotenuse-Angle, and Leg-Angle Congruence Theorems by relating them to general triangle congruence theorems.
• Apply right triangle congruence theorems.

KEY TERMS
• Hypotenuse-Leg (HL) Congruence Theorem
• Leg-Leg (LL) Congruence Theorem
• Hypotenuse-Angle (HA) Congruence Theorem
• Leg-Angle (LA) Congruence Theorem

You know the famous equation $E = mc^2$. But this equation is actually incomplete. The full equation is $E^2 = (mc^2)^2 + (pc)^2$, where E represents energy, m represents mass, p represents momentum, and c represents the speed of light.

You can represent this equation on a right triangle.

![Right Triangle]

So, when an object’s momentum is equal to 0, you get the equation $E = mc^2$.

But what about a particle of light, which has no mass? What equation would describe its energy?
Problem 1
Students review the triangle congruency theorems already proven and explain how fewer congruent corresponding parts are needed to prove right triangles congruent. The Hypotenuse-Leg Congruence Theorem (HL) is a lengthy proof when using a two-column format. The Pythagorean Theorem in conjunction with the AA Similarity Postulate is used to establish the third side of each triangle congruent. Either SSS or SAS can be used to conclude the triangles are congruent. Students may need a few hints to guide them through this proof. A second method for proving this theorem is using construction tools, and a third method of the proof employs the use of transformations, mapping one triangle onto itself.

Grouping
Have students complete Questions 1 through 3 with a partner. Then have students share their responses as a class.

Guiding Questions for Share Phase, Questions 1 through 3
• How many theorems have you proven related to triangle congruency?
• Do those theorems apply to right triangles?
• What do all right triangles have in common?
• What is the measure of a right angle?

Hypotenuse-Leg (HL) Congruence Theorem

1. List all of the triangle congruence theorems you explored previously. The triangle congruence theorems are
 • Side-Side-Side
 • Side-Angle-Side
 • Angle-Side-Angle
 • Angle-Angle-Side

The congruence theorems apply to all triangles. There are also theorems that only apply to right triangles. Methods for proving that two right triangles are congruent are somewhat shorter. You can prove that two right triangles are congruent using only two measurements.

2. Explain why only two pairs of corresponding parts are needed to prove that two right triangles are congruent. Every right triangle contains a 90° angle. I already know that two corresponding angles are congruent, because all right angles are congruent.

3. Are all right angles congruent? Explain your reasoning. All right angles are congruent, because every right angle has a measure of 90° by the definition of a right angle, and all angles of equal measure are congruent.
Grouping
Have students complete Question 4 with a partner. Then have students share their responses as a class.

Guiding Questions for Share Phase, Question 4
- What do you know about all right angles?
- What is the definition of congruent segments?
- If two segments are congruent, does that mean they are equal in measure?
- How is the Pythagorean Theorem helpful in this situation?
- If $AB = DE$, does that mean $AB^2 = DE^2$? How do you know?
- If $CB^2 = FE^2$, does that mean $CB = FE$? How do you know?
- Which corresponding parts were stated congruent in the two triangles?
- Can you use HL as a method for proving any two triangles are congruent? Why or why not?

The Hypotenuse-Leg (HL) Congruence Theorem states: “If the hypotenuse and leg of one right triangle are congruent to the hypotenuse and leg of another right triangle, then the triangles are congruent.”

4. Complete the two-column proof of the HL Congruence Theorem.

Given: $\angle C$ and $\angle F$ are right angles
$\overline{AC} \cong \overline{DF}$
$\overline{AB} \cong \overline{DE}$
Prove: $\triangle ABC \cong \triangle DEF$

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\angle C$ and $\angle F$ are right angles</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. $\angle C \cong \angle F$</td>
<td>2. All right angles are congruent</td>
</tr>
<tr>
<td>3. $\overline{AC} \cong \overline{DF}$</td>
<td>3. Given</td>
</tr>
<tr>
<td>4. $\overline{AB} \cong \overline{DE}$</td>
<td>4. Given</td>
</tr>
<tr>
<td>5. $\overline{AC} \cong \overline{DF}$</td>
<td>5. Definition of congruent segments</td>
</tr>
<tr>
<td>6. $\overline{AB} \cong \overline{DE}$</td>
<td>6. Definition of congruent segments</td>
</tr>
<tr>
<td>7. $\overline{AC}^2 + \overline{CB}^2 = \overline{AB}^2$</td>
<td>7. Pythagorean Theorem</td>
</tr>
<tr>
<td>8. $\overline{DF}^2 + \overline{FE}^2 = \overline{DE}^2$</td>
<td>8. Pythagorean Theorem</td>
</tr>
<tr>
<td>9. $\overline{AC}^2 + \overline{CB}^2 = \overline{DF}^2 + \overline{FE}^2$</td>
<td>9. Substitution Property</td>
</tr>
<tr>
<td>10. $\overline{CB} = \overline{FE}$</td>
<td>10. Subtraction Property of Equality</td>
</tr>
<tr>
<td>11. $\overline{CB} = \overline{FE}$</td>
<td>11. Square Root Property</td>
</tr>
<tr>
<td>12. $\overline{CB} = \overline{FE}$</td>
<td>12. Definition of congruent segments</td>
</tr>
<tr>
<td>13. $\triangle ABC \cong \triangle DEF$</td>
<td>13. SAS Congruence Theorem</td>
</tr>
</tbody>
</table>
Grouping

Have students complete Question 5 with a partner. Then have students share their responses as a class.

Guiding Questions for Share Phase, Question 5

- Which point did you locate first?
- What is the location of the first point?
- Which line segment did you duplicate first?
- Did you duplicate the line segment on the starter line? Why?
- Did you construct a line perpendicular to the starter line and through the first point you located?
- Did you construct a circle? Which line segment is the radius of the circle?
- How did you locate point B?
- How do you know you constructed a right triangle?
- If all of your classmates constructed the same triangle, does this prove that given the hypotenuse and leg of a right triangle, only one unique triangle can be constructed? Does this prove the HL Theorem?

You can also use construction to demonstrate the Hypotenuse-Leg Theorem.

5. Construct right triangle ABC with right angle C, given leg CA and hypotenuse AB. Then, write the steps you performed to construct the triangle.

- Draw a starter line.
- Plot point C on the starter line.
- Duplicate leg CA on the starter line to locate point A.
- Construct a line perpendicular to the starter line through point C.
- Construct circle A with radius AB.
- Label a point at which Circle A intersects the perpendicular line point B.
- Connect points A, C, and B to form right triangle ABC.

a. How does the length of side CB compare to the lengths of your classmates’ sides CB?

The length of side CB is the same in everyone’s triangle.
8.1 Right Triangle Congruence Theorems

Grouping
Have students complete Question 6 with a partner. Then have students share their responses as a class.

Guiding Questions for Share Phase, Question 6, parts (a) and (b)

- Did you use the same method to determine the length of each side of the triangle? Explain your reasoning.
- Was the Pythagorean Theorem or the Distance Formula needed to determine the lengths of the three sides of triangle ABC? Why not?

b. Use a protractor to measure \(\angle A \) and \(\angle B \) in triangle ABC. How do the measures of these angles compare to the measures of your classmates’ angles \(A \) and \(B \)?

We all have congruent angles.

e. Is your triangle congruent to your classmates’ triangles? Why or why not?

All of the triangles are congruent because all of the corresponding sides and all of the corresponding angles are congruent.

Through your two-column proof and your construction proof, you have proven that Hypotenuse-Leg is a valid method of proof for any right triangle. Now let’s prove the Hypotenuse-Leg Theorem on the coordinate plane using algebra.

6. Consider right triangle ABC with right angle \(C \) and points \(A (0, 6) \), \(B (8, 0) \), and \(C (0, 0) \).

a. Graph right triangle ABC.

b. Calculate the length of each line segment forming the sides of triangle ABC and record the measurements in the table.

<table>
<thead>
<tr>
<th>Sides of Triangle ABC</th>
<th>Lengths of Sides of Triangle ABC (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AB)</td>
<td>10</td>
</tr>
<tr>
<td>(BC)</td>
<td>8</td>
</tr>
<tr>
<td>(AC)</td>
<td>6</td>
</tr>
</tbody>
</table>

\[a^2 + b^2 = c^2 \]
\[6^2 + 8^2 = c^2 \]
\[c^2 = 36 + 64 \]
\[c^2 = 100 \]
\[c = \sqrt{100} = 10 \]
Guiding Questions for Share Phase, Question 6, parts (c) through (f)

- Did rotating only the leg and hypotenuse of a right triangle result in forming a unique right triangle? How do you know?
- Is the new right triangle congruent to the original right triangle? How do you know?

<table>
<thead>
<tr>
<th>Coordinates of Triangle ABC</th>
<th>Coordinates of Triangle A'B'C'</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(0,6)</td>
<td>A'(0, -6)</td>
</tr>
<tr>
<td>B(8,0)</td>
<td>B'(-8, 0)</td>
</tr>
<tr>
<td>C(0,0)</td>
<td>C'(0, 0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sides of Triangle A'B'C'</th>
<th>Lengths of Sides of Triangle A'B'C' (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A'B'</td>
<td>10</td>
</tr>
<tr>
<td>B'C'</td>
<td>8</td>
</tr>
<tr>
<td>A'C'</td>
<td>6</td>
</tr>
</tbody>
</table>

\[a^2 + b^2 = c^2 \]
\[b^2 + a^2 = c^2 \]
\[c^2 = 36 + 64 \]
\[c^2 = 100 \]
\[c = \sqrt{100} = 10 \]

- What do you notice about the side lengths of the image and pre-image?
 The side lengths of triangle ABC are the same length as the corresponding sides of triangle A'B'C'.

- Use a protractor to measure \(\angle A \), \(\angle A' \), \(\angle B \), and \(\angle B' \). What can you conclude about the corresponding angles of triangle ABC and triangle A'B'C'? How do you know?
 The corresponding angles of the two triangles are congruent.

You have shown that the corresponding sides and corresponding angles of the pre-image and image are congruent. Therefore, the triangles are congruent.
Problem 2
Rigid motion is used to prove the remaining right triangle congruence theorems. Students graph three coordinates to form a right triangle. They calculate the length of the three sides using the Pythagorean Theorem or Distance Formula. Next, students translate the two legs of the right triangle both vertically and horizontally and connect endpoints to form a second triangle. After calculating the lengths of the sides of the second triangle and using a protractor to measure angles, it can be concluded that two right triangles map onto each other; therefore they are congruent (LL). This activity is repeated for the LA and HA right triangle congruence theorems using reflections or translations.

Grouping
Have students complete Question 1 with a partner. Then have students share their responses as a class.

Guiding Questions for Share Phase, Question 1, parts (a) and (b)
- Where is the right angle of triangle ABC located on the coordinate plane?
- Was the Pythagorean Theorem or the Distance Formula needed to determine the lengths of the three sides of triangle ABC? Why not?
Guiding Questions for Share Phase, Question 1, parts (c) through (f)

- Did translating only the two legs of a right triangle result in forming a unique right triangle? How do you know?
- Is the new right triangle congruent to the original right triangle? How do you know?
- Can you use LL as a method for proving any two triangles are congruent? Why or why not?

c. Translate side AC, and side BC, to the left 3 units, and down 5 units. Then, connect points A', B' and C' to form triangle A'B'C'. Use the table to record the image coordinates.

<table>
<thead>
<tr>
<th>Coordinates of Triangle ABC</th>
<th>Coordinates of Triangle A'B'C'</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(0, 5)</td>
<td>A'(-3, -0)</td>
</tr>
<tr>
<td>B(12, 0)</td>
<td>B'(9, -5)</td>
</tr>
<tr>
<td>C(0, 0)</td>
<td>C'(-3, -5)</td>
</tr>
</tbody>
</table>

d. Calculate the length of each line segment forming the sides of triangle A'B'C', and record the measurements in the table.

<table>
<thead>
<tr>
<th>Sides of Triangle A'B'C'</th>
<th>Lengths of Sides of Triangle A'B'C'</th>
</tr>
</thead>
<tbody>
<tr>
<td>A'B'</td>
<td>13</td>
</tr>
<tr>
<td>B'C'</td>
<td>12</td>
</tr>
<tr>
<td>A'C'</td>
<td>5</td>
</tr>
</tbody>
</table>

\[a^2 + b^2 = c^2 \]
\[5^2 + 12^2 = c^2 \]
\[c^2 = 25 + 144 \]
\[c^2 = 169 = 13 \]

e. What do you notice about the side lengths of the image and pre-image? The side lengths of triangle ABC are the same length as the corresponding sides of triangle A'B'C'.

f. Use a protractor to measure \(\angle A \), \(\angle A' \), \(\angle B \), and \(\angle B' \). What can you conclude about the corresponding angles of triangle ABC and triangle A'B'C'? The corresponding angles of the two triangles are congruent. You have shown that the corresponding sides and corresponding angles of the pre-image and image are congruent. Therefore, the triangles are congruent.

In conclusion, when two legs of a right triangle are congruent to the two legs of another right triangle, then the right triangles are congruent.
Grouping
Have students complete Question 2 with a partner. Then have students share their responses as a class.

Guiding Questions for Share Phase, Question 2, parts (a) and (b)
• Where is the right angle of triangle ABC located on the coordinate plane?
• Was the Pythagorean Theorem or the Distance Formula needed to determine the lengths of the three sides of triangle ABC? Why not?

The Hypotenuse-Angle (HA) Congruence Theorem states: “If the hypotenuse and an acute angle of one right triangle are congruent to the hypotenuse and acute angle of another right triangle, then the triangles are congruent.”

2. Consider right triangle ABC with right angle \(C \) and points \(A(0, 9) \), \(B(12, 0) \), and \(C(0, 0) \).
 a. Graph right triangle \(ABC \) with right \(\angle C \), by plotting the points \(A(0, 9) \), \(B(12, 0) \), and \(C(0, 0) \).

b. Calculate the length of each line segment forming the sides of triangle \(ABC \), and record the measurements in the table.

<table>
<thead>
<tr>
<th>Sides of Triangle (ABC)</th>
<th>Lengths of Sides of Triangle (ABC) (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(AB)</td>
<td>15</td>
</tr>
<tr>
<td>(BC)</td>
<td>12</td>
</tr>
<tr>
<td>(AC)</td>
<td>9</td>
</tr>
</tbody>
</table>

\[a^2 + b^2 = c^2 \]
\[9^2 + 12^2 = c^2 \]
\[c^2 = 81 + 144 \]
\[c^2 = \sqrt{225} = 15 \]
Guiding Questions for Share Phase, Question 2, parts (c) through (f)

- Did translating only one acute angle and the hypotenuse of a right triangle result in forming a unique right triangle? How do you know?
- Is the new right triangle congruent to the original right triangle? How do you know?
- Can you use HA as a method for proving any two triangles are congruent? Why or why not?

c. Translate side AB, and $\angle A$, to the left 4 units, and down 8 units. Then, connect points A', B' and C' to form triangle $A'B'C'$. Use the table to record the image coordinates.

<table>
<thead>
<tr>
<th>Coordinates of Triangle ABC</th>
<th>Coordinates of Triangle $A'B'C'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A(0, 9)$</td>
<td>$A'(-4, 1)$</td>
</tr>
<tr>
<td>$B(12, 0)$</td>
<td>$B'(8, -8)$</td>
</tr>
<tr>
<td>$C(0, 0)$</td>
<td>$C'(-4, -8)$</td>
</tr>
</tbody>
</table>

d. Calculate the length of each line segment forming the sides of triangle $A'B'C'$, and record the measurements in the table.

<table>
<thead>
<tr>
<th>Sides of Triangle $A'B'C'$</th>
<th>Lengths of Sides of Triangle $A'B'C'$ (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A'B'$</td>
<td>15</td>
</tr>
<tr>
<td>$B'C'$</td>
<td>12</td>
</tr>
<tr>
<td>$A'C'$</td>
<td>9</td>
</tr>
</tbody>
</table>

$$a^2 + b^2 = c^2$$
$$9^2 + 12^2 = c^2$$
$$c^2 = 81 + 144$$
$$c^2 = \sqrt{225} = 15$$

e. What do you notice about the side lengths of the image and pre-image? The side lengths of triangle ABC are the same length as the corresponding sides of triangle $A'B'C'$.

f. Use a protractor to measure $\angle A$, $\angle A'$, $\angle B$, and $\angle B'$. What can you conclude about the corresponding angles of triangle ABC and triangle $A'B'C'$?
The corresponding angles of the two triangles are congruent.

You have shown that the corresponding sides and corresponding angles of the pre-image and image are congruent. Therefore, the triangles are congruent.
Grouping
Have students complete Question 3 with a partner. Then have students share their responses as a class.

Guiding Questions for Share Phase, Question 3, parts (a) and (b)
- Where is the right angle of triangle ABC located on the coordinate plane?
- Was the Pythagorean Theorem or the Distance Formula needed to determine the lengths of the three sides of triangle ABC? Why not?

3. Consider right triangle ABC with right angle C and points A (0, 7), B (24, 0), and C (0, 0).

a. Graph right triangle ABC with right ∠C, by plotting the points A (0, 7), B (24, 0), and C (0, 0).

b. Calculate the length of each line segment forming the sides of triangle ABC, and record the measurements in the table.

<table>
<thead>
<tr>
<th>Sides of Triangle ABC</th>
<th>Lengths of Sides of Triangle ABC (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>25</td>
</tr>
<tr>
<td>BC</td>
<td>24</td>
</tr>
<tr>
<td>AC</td>
<td>7</td>
</tr>
</tbody>
</table>

\[a^2 + b^2 = c^2 \]
\[7^2 + 24^2 = c^2 \]
\[c^2 = 49 + 576 \]
\[c^2 = 625 \]
\[c = \sqrt{625} = 25 \]
Guiding Questions for Share Phase, Question 3, parts (c) through (f)

- Did translating only one leg and one acute angle of a right triangle result in forming a unique right triangle? How do you know?
- Is the new right triangle congruent to the original right triangle? How do you know?
- Can you use LA as a method for proving any two triangles are congruent? Why or why not?

c. Reflect side AC, and $\angle B$ over the x-axis. Then, connect points A', B' and C' to form triangle $A'B'C'$. Use the table to record the image coordinates.

<table>
<thead>
<tr>
<th>Coordinates of Triangle ABC</th>
<th>Coordinates of Triangle A'B'C'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A(0,7)$</td>
<td>$A'(0,-7)$</td>
</tr>
<tr>
<td>$B(24,0)$</td>
<td>$B'(24,0)$</td>
</tr>
<tr>
<td>$C(0,0)$</td>
<td>$C'(0,0)$</td>
</tr>
</tbody>
</table>

d. Calculate the length of each line segment forming the sides of triangle $A'B'C'$, and record the measurements in the table.

<table>
<thead>
<tr>
<th>Sides of Triangle A'B'C'</th>
<th>Lengths of Sides of Triangle A'B'C' (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A'B'$</td>
<td>25</td>
</tr>
<tr>
<td>$B'C'$</td>
<td>24</td>
</tr>
<tr>
<td>$A'C'$</td>
<td>7</td>
</tr>
</tbody>
</table>

e. What do you notice about the side lengths of the image and pre-image?
The side lengths of triangle ABC are the same length as the corresponding sides of triangle $A'B'C'$.

f. Use a protractor to measure $\angle A$, $\angle A'$, $\angle B$, and $\angle B'$. What can you conclude about the corresponding angles of triangle ABC and triangle $A'B'C'$?
The corresponding angles of the two triangles are congruent.

You have shown that the corresponding sides and corresponding angles of the pre-image and image are congruent. Therefore, the triangles are congruent.
Problem 3
Students determine if there is enough information to prove two triangles congruent and identify the triangle congruence theorem when appropriate.

Grouping
Have students complete Questions 1 through 4 with a partner. Then have students share their responses as a class.

Guiding Questions for Share Phase, Questions 1 and 2
• If two lines are perpendicular to the same line, what can you conclude?
• If \(P \) is the midpoint of line segment \(CW \), what can you conclude?
• Are triangles \(CSP \) and \(WDP \) right triangles? How do you know?
• Do the two triangles share a common side?
• Do the two triangles share a common angle?
• Are triangles \(RFP \) and \(BPF \) right triangles? How do you know?
• Is there more than one way to prove these triangles congruent?
• Do you know if the lengths of the treads are the same?
• Do you know if the heights of the risers are the same?

PROBLEM 3 Applying Right Triangle Congruence Theorems
Determine if there is enough information to prove that the two triangles are congruent. If so, name the congruence theorem used.

1. If \(CS \perp SD \), \(WD \perp SD \), and \(P \) is the midpoint of \(CW \), is \(\triangle CSP \cong \triangle WDP \)?

![Diagram of triangles CSP and WDP]

Yes. There is enough information to conclude that \(\triangle CSP \cong \triangle WDP \) by HA. Point \(P \) is the midpoint so I know that \(SP \cong PD \). Also, \(\angle CPS \cong \angle DPW \) because they are vertical angles and vertical angles are congruent.

2. Pat always trips on the third step and she thinks that step may be a different size. The contractor told her that all the treads and risers are perpendicular to each other. Is that enough information to state that the steps are the same size? In other words, if \(WN \perp NZ \) and \(ZH \perp HK \), is \(\triangle WNZ \cong \triangle ZHK \)?

![Diagram of stairs]

No. Triangle \(WNZ \) might not be congruent to \(\triangle HKZ \). The lengths of the treads may be different or heights of the risers may be different.
Guiding Questions for Share Phase, Questions 3 and 4

- Are triangles JYM and AYM right triangles? How do you know?
- Is there more than one way to prove these triangles congruent?
- Are triangles STR and ATR right triangles? How do you know?
- Is there more than one way to prove these triangles congruent?

3. If $\overline{JA} \perp \overline{MY}$ and $\overline{JY} = \overline{AY}$, is $\triangle JYM \cong \triangle AYM$?

Yes. There is enough information to conclude that $\triangle JYM \cong \triangle AYM$ by HL.
I know that \overline{MY} is congruent to itself by the Reflexive Property.

4. If $\overline{ST} \perp \overline{SR}$, $\overline{AR} \perp \overline{AR}$, and $\angle STR = \angle ATR$, is $\triangle STR \cong \triangle ATR$?

Yes. There is enough information to conclude that $\triangle STR \cong \triangle ATR$ by HA.
I know that \overline{RT} is congruent to itself by the Reflexive Property.
8.1 Right Triangle Congruence Theorems

Grouping
- Ask a student to read aloud the information before Question 5 and discuss as a class.
- Have students complete Questions 5 through 7 with a partner. Then have students share their responses as a class.

Guiding Questions for Share Phase, Question 5
- Do the two triangles share a common side?
- Do the two triangles share a common angle?
- Are the two triangles right triangles?

It is necessary to make a statement about the presence of right triangles when you use the Right Triangle Congruence Theorems. If you have previously identified the right angles, the reason is the definition of right triangles.

5. Create a proof of the following.
 Given: \(GU \perp DB \)
 \(GB = GD \)
 Prove: \(\triangle GUD \cong \triangle GUB \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (GU \perp DB)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\angle GUD) and (\angle GUB) are right angles</td>
<td>2. Definition of perpendicular lines</td>
</tr>
<tr>
<td>3. (\triangle GUD) and (\triangle GUB) are right triangles</td>
<td>3. Definition of right triangles</td>
</tr>
<tr>
<td>4. (GB = GD)</td>
<td>4. Given</td>
</tr>
<tr>
<td>5. (GU = GU)</td>
<td>5. Reflexive Property of (\cong)</td>
</tr>
<tr>
<td>6. (\triangle GUD \cong \triangle GUB)</td>
<td>6. HL Congruence Theorem</td>
</tr>
</tbody>
</table>
Guiding Questions for Share Phase, Question 6

- What is the definition of perpendicular bisector?
- What is the definition of perpendicular lines?
- What is the definition of bisect?
- Is there more than one way to prove these triangles congruent?
- Where is the right angle in the dock situation?
- Where is the right triangle in the dock situation?

6. Create a proof of the following.
 Given: GU is the \(\perp \) bisector of DB
 Prove: \(\triangle GUD \cong \triangle GUB \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. GU is the (\perp) bisector of DB</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. GU (\perp) DB</td>
<td>2. Definition of perpendicular bisector</td>
</tr>
<tr>
<td>3. GU bisects DB</td>
<td>3. Definition of perpendicular bisector</td>
</tr>
<tr>
<td>4. (\angle GUD) and (\angle GUB) are right angles</td>
<td>4. Definition of perpendicular lines</td>
</tr>
<tr>
<td>5. (\triangle GUD) and (\triangle GUB) are right triangles</td>
<td>5. Definition of right triangles</td>
</tr>
<tr>
<td>6. (DU = BU)</td>
<td>6. Definition of bisect</td>
</tr>
<tr>
<td>7. GU = GU</td>
<td>7. Reflexive Property of Equality</td>
</tr>
<tr>
<td>8. (\triangle GUD \cong \triangle GUB)</td>
<td>8. LL Congruence Theorem</td>
</tr>
</tbody>
</table>
Guiding Questions for Share Phase, Question 7

- Where is the right angle in the dock situation?
- Where is the right triangle in the dock situation?

7. A friend wants to place a post in a lake 20 feet to the right of the dock. What is the minimum information you need to make sure the angle formed by the edge of the dock and the post is a right angle?

I only need to be given one more piece of information. I could use the length of the dock (Leg-Leg), or I could use the measure of an acute angle (LA).

Suppose I am given the length of the dock. I could then calculate the distance from the post to the furthest end of the dock to know the length of the hypotenuse. If I measure that distance to see if it matches, I know it is a right triangle.
Talk the Talk

Students answer a series of questions focusing on triangle congruence theorems.

Grouping

Have students complete Questions 1 through 4 with a partner. Then have students share their responses as a class.

1. Which triangle congruence theorem is most closely related to the LL Congruence Theorem? Explain your reasoning.

 The SAS Congruence Theorem is most closely related to the LL Congruence Theorem because the right angles in the two right triangles are the included angle between the two given legs.

2. Which triangle congruence theorem is most closely related to the HA Congruence Theorem? Explain your reasoning.

 The AAS Congruence Theorem is most closely related to the HA Congruence Theorem because the right angles are in each of the right triangles as well as the given acute angles and the given hypotenuses.

3. Which triangle congruence theorem is most closely related to the LA Congruence Theorem? Explain your reasoning.

 The AAS Congruence Theorem is most closely related to the LA Congruence Theorem because the right angles are in each of the right triangles as well as the given acute angles and the given legs.

4. Which triangle congruence theorem is most closely related to the HL Congruence Theorem? Explain your reasoning.

 The SSS Congruence Theorem is most closely related to the HL Congruence Theorem because I can use the Pythagorean Theorem to show that the other legs are also congruent.

Be prepared to share your solutions and methods.
Check for Students' Understanding

1. List the four triangle congruence theorems associated with right triangles.
 1. HL Congruence Theorem
 2. LL Congruence Theorem
 3. HA Congruence Theorem
 4. LA Congruence Theorem

2. List the four triangle congruence theorems associated with all triangles.
 1. SAS Congruence Theorem
 2. ASA Congruence Theorem
 3. SSS Congruence Theorem
 4. AAS Congruence Theorem

3. Associate each theorem in Question 1 with its related theorem in Question 2.
 HL can be associated to the SSS Congruence Theorem.
 LL can be associated to the SAS Congruence Theorem.
 HA can be associated to the AAS Congruence Theorem.
 LA can be associated to the AAS Congruence Theorem.
CPCTC

Corresponding Parts of Congruent Triangles are Congruent

LEARNING GOALS

In this lesson, you will:

- Identify corresponding parts of congruent triangles.
- Use corresponding parts of congruent triangles to prove angles and segments are congruent.
- Use corresponding parts of congruent triangles to prove the Isosceles Triangle Base Angle Theorem.
- Use corresponding parts of congruent triangles to prove the Isosceles Triangle Base Angle Converse Theorem.
- Apply corresponding parts of congruent triangles.

ESSENTIAL IDEAS

- Corresponding parts of congruent triangles are congruent. Abbreviated CPCTC.
- The Isosceles Triangle Base Angle Theorem states: “If two sides of a triangle are congruent, then the angles opposite these sides are congruent.”
- The Isosceles Triangle Base Angle Converse Theorem states: “If two angles of a triangle are congruent, then the sides opposite these angles are congruent.”

KEY TERMS

- corresponding parts of congruent triangles are congruent (CPCTC)
- Isosceles Triangle Base Angle Theorem
- Isosceles Triangle Base Angle Converse Theorem

TEXAS ESSENTIAL KNOWLEDGE AND SKILLS FOR MATHEMATICS

(6) Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart. The student is expected to:

(D) verify theorems about the relationships in triangles, including proof of the Pythagorean Theorem, the sum of interior angles, base angles of isosceles triangles, midsegments, and medians, and apply these relationships to solve problems
Overview

Students identify corresponding parts of congruent triangles and CPCTC (Corresponding Parts of Congruent Triangles are Congruent) is used as a reason in proof problems to conclude segments and angles are congruent. The Isosceles Base Angle Theorem and the Isosceles Base Angle Converse Theorem are stated. Students prove the theorems by constructing a line that bisects the vertex angle of an isosceles triangle. Students apply the theorems to several problem situations to solve for unknown measurements.
Warm Up

1. \(\triangle COR \cong \triangle ESP \)

 Name a part of \(\triangle COR \) that corresponds to \(\triangle SEP \).

 Answers will vary.

 \(\angle SEP \) corresponds to \(\angle OCR \)

2. \(\triangle OND \cong \triangle ING \)

 Name a part of \(\triangle OND \) that corresponds to \(\overline{GI} \).

 Answers will vary.

 \(\overline{GI} \) corresponds to \(\overline{DO} \)

3. Given: \(\overline{GE} \parallel \overline{KV} \) and \(\overline{VK} \equiv \overline{EG} \)

 Is \(\angle V \equiv \angle E \)? Explain.

 Yes, \(\angle V \equiv \angle E \) because the triangles can be proven congruent by the SAS Congruence Theorem.

 If the triangles are congruent then all of their corresponding parts are congruent.
Which of the blue lines shown is longer? Most people will answer that the line on the right appears to be longer.

But in fact, both blue lines are the exact same length! This famous optical illusion is known as the Mueller-Lyer illusion. You can measure the lines to see for yourself. You can also draw some of your own to see how it almost always works!
Problem 1

The abbreviation for Corresponding Parts of Congruent Triangles are Congruent (CPCTC) is introduced. In the first proof, students use CPCTC to prove segments congruent. In the second proof, students use CPCTC to prove two angles congruent. The use of CPCTC in conjunction with other definitions, theorems, and postulates creates a multitude of proof possibilities.

ELL Tip

After going over the phrase CPCTC but before students try Questions 1 and 2, ask students to identify which pairs of triangles they think are congruent. Check that students properly identify the corresponding vertices. Then, ask them to identify all the corresponding parts. Be sure students understand that there are 6 pairs of corresponding parts—three pairs of angles and three pairs of sides.

Guiding Questions for Share Phase, Question 1

- What is the definition of bisect?
- Do the triangles share a common angle?
- Do the triangles share a common side?
- Do the triangles contain vertical angles?

Problem 1

The abbreviation for Corresponding Parts of Congruent Triangles are Congruent (CPCTC) is introduced. In the first proof, students use CPCTC to prove segments congruent. In the second proof, students use CPCTC to prove two angles congruent. The use of CPCTC in conjunction with other definitions, theorems, and postulates creates a multitude of proof possibilities.

Problem 2

If two triangles are congruent, then each part of one triangle is congruent to the corresponding part of the other triangle. “Corresponding parts of congruent triangles are congruent,” abbreviated as CPCTC, is often used as a reason in proofs. CPCTC states that corresponding angles or sides in two congruent triangles are congruent. This reason can only be used after you have proven that the triangles are congruent.

To use CPCTC in a proof, follow these steps:

1. Identify two triangles in which segments or angles are corresponding parts.
2. Prove the triangles congruent.
3. State the two parts are congruent using CPCTC as the reason.

1. Create a proof of the following.

Given: \(CW \) and \(SD \) bisect each other
Prove: \(CS = WD \)

Guiding Questions for Share Phase, Question 1

- What is the definition of bisect?
- Do the triangles share a common angle?
- Do the triangles share a common side?
- Do the triangles contain vertical angles?
Guiding Questions for Share Phase, Question 2

- What is the triangle congruency statement?
- Which congruence theorem was used to prove the triangles congruent?

2. Create a proof of the following.

Given: $SU = SK$, $SR = SH$
Prove: $\angle U = \angle K$

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $SU = SK$</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. $SR = SH$</td>
<td>2. Given</td>
</tr>
<tr>
<td>3. $\angle S = \angle S$</td>
<td>3. Reflexive Property of \cong</td>
</tr>
<tr>
<td>4. $\triangle USH = \triangle KSR$</td>
<td>4. SAS Congruence Theorem</td>
</tr>
<tr>
<td>5. $\angle U = \angle K$</td>
<td>5. CPCTC</td>
</tr>
</tbody>
</table>
Problem 2
Using CPCTC, students prove the Isosceles Triangle Base Angle Theorem: If two sides of a triangle are congruent, then the angles opposite these sides are congruent. Students also prove the Isosceles Triangle Base Angle Converse Theorem: If two angles of a triangle are congruent, then the sides opposite these angles are congruent. Both proofs are done with the use of a line segment connecting the vertex angle of the isosceles triangle to the base.

Grouping
- Discuss the information about the Isosceles Triangle Base Angle Theorem as a class.
- Have students complete Questions 1 and 2 with a partner. Then have students share their responses as a class.

Guiding Questions for Share Phase, Question 1
- Where should a line be drawn that divides the isosceles triangle into two triangles?
- Can you draw a line segment that bisects angle G?
- Do the triangles share a common angle?
- Do the triangles share a common side?
- Do the triangles contain vertical angles?

PROBLEM Isosceles Triangle Base Angle Theorem and Its Converse
CPCTC makes it possible to prove other theorems. The Isosceles Triangle Base Angle Theorem states: “If two sides of a triangle are congruent, then the angles opposite these sides are congruent.”

To prove the Isosceles Triangle Base Angle Theorem, you need to add a line to an isosceles triangle that bisects the vertex angle as shown.

1. Create a proof of the following.
 Given: \(GB = GD \)
 Prove: \(\angle B = \angle D \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (GB = GD)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (GU) bisects (BGD)</td>
<td>2. Construction</td>
</tr>
<tr>
<td>3. (\angle BGU = \angle DGU)</td>
<td>3. Definition of bisect</td>
</tr>
<tr>
<td>4. (GU = GU)</td>
<td>4. Reflexive Property of Congruence</td>
</tr>
<tr>
<td>5. (\triangle GUD = \triangle GUB)</td>
<td>5. SAS Congruence Theorem</td>
</tr>
<tr>
<td>6. (\angle B = \angle D)</td>
<td>6. CPCTC</td>
</tr>
</tbody>
</table>
Guiding Questions for Share Phase, Question 2

- What is the triangle congruency statement?
- Which congruence theorem was used to prove the triangles congruent?

The Isosceles Triangle Base Angle Converse Theorem states: “If two angles of a triangle are congruent, then the sides opposite these angles are congruent.”

To prove the Isosceles Triangle Base Angle Converse Theorem, you need to again add a line to an isosceles triangle that bisects the vertex angle as shown.

2. Create a proof of the following.

Given: \(\angle B = \angle D \)
Prove: \(\overline{GB} \cong \overline{GD} \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\angle B \cong \angle D)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (\overline{GU}) bisects (\overline{BGD})</td>
<td>2. Construction</td>
</tr>
<tr>
<td>3. (\angle BGU \cong \angle DGU)</td>
<td>3. Definition of bisect</td>
</tr>
<tr>
<td>4. (\overline{GU} \cong \overline{GU})</td>
<td>4. Reflexive Property of Congruence</td>
</tr>
<tr>
<td>5. (\triangle GUD \cong \triangle GUB)</td>
<td>5. AAS Congruence Theorem</td>
</tr>
<tr>
<td>6. (\overline{GB} \cong \overline{GD})</td>
<td>6. CPCTC</td>
</tr>
</tbody>
</table>
Problem 3
Students apply the theorems in this lesson to solve for unknown measurements.

Grouping
Have students complete Questions 1 through 6 with a partner. Then have students share their responses as a class.

Guiding Questions for Share Phase, Questions 1 and 2
• Are the two triangles congruent?
• What theorem can be used to prove the two triangles congruent?
• Was CPCTC used to determine the solution? How?
• What do you know about sides \(AY\) and \(AP\)? How do you know this?
• Which theorem is helpful when determining the relationship between sides \(AY\) and \(AP\)?

PROBLEM Applications of CPCTC

1. How wide is the horse’s pasture?

The horse’s pasture is 45 feet wide.
I know that one pair of legs are congruent. I also know that the vertical angles are congruent. So, the triangles are congruent by LA Congruence Theorem. Corresponding parts of the triangles are congruent, so the width of the pasture is 45 feet.

2. Calculate \(AP\) if the perimeter of \(\triangle AYP\) is 43 cm.

\(AP = 15\) cm
By the Isosceles Triangle Base Angles Converse Theorem, I know that triangle \(AYP\) is an isosceles triangle with \(AY = AP\). Let \(x\) represent the length of \(AP\).
\[
x + x + 13 = 43
\]
\[
2x + 13 = 43
\]
\[
2x = 30
\]
\[
x = 15
\]
Guiding Questions for Share Phase, Questions 3 and 4

- On the Ferris wheel, what is the length of lighting on one beam?
- What do you know about the length of all four beams?
- What theorem is helpful in determining the total length of lighting?
- How did you determine the measure of angle WMT?
- What do you know about the relationship between angles W and WMT?
- What do you know about the sum of the measures of the three interior angles of a triangle?

3. Lighting booms on a Ferris wheel consist of four steel beams that have cabling with light bulbs attached. These beams, along with three shorter beams, form the edges of three congruent isosceles triangles, as shown. Maintenance crews are installing new lighting along the four beams. Calculate the total length of lighting needed.

100 feet of lights are needed to illuminate the three triangles. The three isosceles triangles are congruent so the congruent sides of each are equal to 25 feet. I will need 4×25, or 100 feet of lights for the four beams.

4. Calculate $m \angle T$.

$m \angle T = 54^\circ$

The angle measuring 117° and angle TMW form a linear pair so they are supplementary. So, the measure of angle TMW is $180^\circ - 117^\circ$, or 63°.

By the Isosceles Triangle Base Angle Theorem, I know that the base angles are congruent. So, the measure of angle TWM is also 63°.

Let x represent the measure of angle T.

$63 + 63 + x = 180$

$126 + x = 180$

$x = 54$
Guiding Questions for Share Phase, Questions 5 and 6

• How did you determine the width of the river?
• What theorem was helpful in determining the width of the river?
• Where would an auxiliary line be helpful in this figure?

5. What is the width of the river?

The river is 65 feet wide.
I know that two pairs of corresponding sides are congruent. I also know that the included angles are vertical angles and congruent. So, the triangles are congruent by SAS Congruence Theorem. Corresponding parts of the triangles are congruent, so the width of the river is 65 feet.

6. Given: $\overline{ST} \cong \overline{SR}$, $\overline{TA} \cong \overline{RA}$

Explain why $\angle T \cong \angle R$.

Construct a line from point S to point A to form $\triangle SAR$ and $\triangle SAT$. Two pairs of corresponding sides are congruent. I also know that segment SA is congruent to itself by the Reflexive Property. So, $\triangle SAR \cong \triangle SAT$ by SSS. Therefore, $\angle T \cong \angle R$ by CPCTC.

Be prepared to share your solutions and methods.
Check for Students’ Understanding

On a baseball diamond, the bases are at the vertices of a square. Each side of the square is 90 feet. The Pitcher’s mound is on the diagonal between home plate and 2nd base, 60 feet from home plate. Is the pitcher’s mound 60 feet from 2nd base? Can CPCTC be used to solve for this distance? Explain your reasoning.

CPCTC could be used if the triangle formed by the home plate, the pitcher’s mound and first base was congruent to the triangle formed by the second base, the pitcher’s mound, and the first base. If those two triangles are congruent isosceles right triangles, the pitcher’s mound would be 60 feet from 2nd base.

If the distance between the pitcher’s mound and 2nd base was 60 feet, the pitcher’s mound would be the middle point of the diagonal. If it was the middle point of one diagonal, it would be the middle point of the second diagonal connecting 3rd base to 1st base because the diagonals of a square perpendicular bisectors of each other and are congruent. The diagonals of the square would form four congruent isosceles right triangles with legs equal to 60 feet and hypotenuses equal to 90 feet. This is impossible:

\[c^2 = 60^2 + 60^2 \]
\[= 3600 + 3600 \]
\[= 7200 \]
\[c = \sqrt{7200} \approx 84.85 \text{ feet} \]

\[90^2 = x^2 + x^2 \]
\[= 8100 = 2x^2 \]
\[4050 = x^2 \]
\[x = \sqrt{4050} \approx 63.64 \text{ feet} \]

If the legs are 60 feet, the hypotenuse must be approximately 84.85 feet, not 90 feet. Or if the hypotenuse is 90 feet, the legs must be approximately 63.64 feet, not 60 feet. Therefore the pitcher’s mound cannot be 60 feet from 2nd base. The triangle formed by the pitcher’s mound, home plate and the 1st base is not an isosceles right triangle.

The distance from the pitcher’s mound to 2nd base must be approximately

\[2(63.64) - 60 = 67.28 \text{ feet} \]

CPCTC could not be used to solve for the distance from the pitcher’s mound to 2nd base.
Congruence Theorems in Action

Isosceles Triangle Theorems

LEARNING GOALS

In this lesson, you will:

• Prove the Isosceles Triangle Base Theorem.
• Prove the Isosceles Triangle Vertex Angle Theorem.
• Prove the Isosceles Triangle Perpendicular Bisector Theorem.
• Prove the Isosceles Triangle Altitude to Congruent Sides Theorem.
• Prove the Isosceles Triangle Angle Bisector to Congruent Sides Theorem.

ESSENTIAL IDEAS

• The Isosceles Triangle Base Theorem states: “The altitude to the base of an isosceles triangle bisects the base.”
• The Isosceles Triangle Vertex Angle Theorem states: “The altitude to the base of an isosceles triangle bisects the vertex angle.”
• The Isosceles Triangle Perpendicular Bisector Theorem states: “The altitude from the vertex angle of an isosceles triangle is the perpendicular bisector of the base.”
• The Isosceles Triangle Altitude to Congruent Sides Theorem states: “In an isosceles triangle, the altitudes to the congruent sides are congruent.”
• The Isosceles Triangle Angle Bisector to Congruent Sides Theorems states: “In an isosceles triangle, the angle bisectors to the congruent sides are congruent.”

KEY TERMS

• vertex angle of an isosceles triangle
• Isosceles Triangle Base Theorem
• Isosceles Triangle Vertex Angle Theorem
• Isosceles Triangle Perpendicular Bisector Theorem
• Isosceles Triangle Altitude to Congruent Sides Theorem
• Isosceles Triangle Angle Bisector to Congruent Sides Theorem

TEXAS ESSENTIAL KNOWLEDGE AND SKILLS FOR MATHEMATICS

(2) Coordinate and transformational geometry.
The student uses the process skills to understand the connections between algebra and geometry and uses the one- and two-dimensional coordinate systems to verify geometric conjectures. The student is expected to:

(B) derive and use the distance, slope, and midpoint formulas to verify geometric relationships, including congruence of segments and parallelism or perpendicularity of pairs of lines.
Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures. The student is expected to:

(B) construct congruent segments, congruent angles, a segment bisector, an angle bisector, perpendicular lines, the perpendicular bisector of a line segment, and a line parallel to a given line through a point not on a line using a compass and a straightedge

Proof and congruence. The student uses the process skills with deductive reasoning to prove and apply theorems by using a variety of methods such as coordinate, transformational, and axiomatic and formats such as two-column, paragraph, and flow chart. The student is expected to:

(A) verify theorems about angles formed by the intersection of lines and line segments, including vertical angles, and angles formed by parallel lines cut by a transversal and prove equidistance between the endpoints of a segment and points on its perpendicular bisector and apply these relationships to solve problems

(D) verify theorems about the relationships in triangles, including proof of the Pythagorean Theorem, the sum of interior angles, base angles of isosceles triangles, midsegments, and medians, and apply these relationships to solve problems

Overview
Students prove several theorems associated with an isosceles triangle involving the altitude to the base, the altitude from the vertex angle, the altitudes to the congruent sides, and the angle bisectors to the congruent sides. The formats of the proofs include flow-chart, two-column, and paragraph.
Warm Up

DO is an altitude in $\triangle WDE$.

1. Is $\angle DOW \equiv \angle DOB$? Explain your reasoning.
 Yes, they are congruent. If DO is an altitude, DO is perpendicular to WB. Perpendicular line segments determine right angles. $\angle DOW$ and $\angle DOB$ are right angles. All right angles are congruent.

2. Is $\overline{OW} \equiv \overline{OB}$? Explain your reasoning.
 There is not enough information to determine $\overline{OW} \equiv \overline{OB}$.

3. Is $\angle WDO \equiv \angle BDO$? Explain your reasoning.
 There is not enough information to determine $\angle WDO \equiv \angle BDO$.
You know that the measures of the three angles in a triangle equal 180°, and that no triangle can have more than one right angle or obtuse angle.

Unless, however, you’re talking about a spherical triangle. A spherical triangle is a triangle formed on the surface of a sphere. The sum of the measures of the angles of this kind of triangle is always greater than 180°. Spherical triangles can have two or even three obtuse angles or right angles.

The properties of spherical triangles are important to a certain branch of science. Can you guess which one?
Problem 1

The Isosceles Triangle Base Theorem states: “The altitude to the base of an isosceles triangle bisects the base.” Students prove this theorem using a two-column proof. Next, they extend their reasoning to describe the proof of the Isosceles Triangle Vertex Angle Theorem which states: “The altitude to the base of an isosceles triangle bisects the vertex angle” and the Isosceles Triangle Perpendicular Bisector Theorem which states: “The altitude from the vertex angle of an isosceles triangle is the perpendicular bisector of the base.”

ELL Tip

Prepare students to read through Problems 1 and 2 of this lesson by having them draw a picture of an isosceles triangle and identify and label the following parts: vertex angle, base angles, base, and legs. Then, have students find and write down the definitions of altitude, angle bisector, and perpendicular bisector.

Grouping

• Discuss the definition of vertex angle of an isosceles triangle and the Isosceles Triangle Base Theorem as a class.

• Have students complete Questions 1 through 6 with a partner. Then have students share their responses as a class.

Guiding Questions for Share Phase, Questions 1 and 2

• What is the definition of altitude?
• How many altitudes are in a triangle?
• Are perpendicular line relationships always associated with altitudes?
Guiding Questions for Share Phase, Questions 3 and 4

- To state that a triangle is a right triangle, what must first be stated?
- Are the triangles formed by the altitude drawn to the base of the isosceles triangle congruent?

The **Isosceles Triangle Vertex Angle Theorem** states: “The altitude to the base of an isosceles triangle bisects the vertex angle.”

3. Draw and label a diagram you can use to help you prove the Isosceles Triangle Vertex Angle Theorem. State the “Given” and “Prove” statements.

![Diagram](image)

Given: Isosceles \(\triangle ABC \) with \(CA \cong CB \)

Prove: \(CD \) bisects \(\angle ACB \)

4. Prove the Isosceles Triangle Vertex Angle Theorem.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (CA \cong CB)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (CD) is an altitude</td>
<td>2. Construction</td>
</tr>
<tr>
<td>3. (CD \perp AB)</td>
<td>3. Definition of altitude</td>
</tr>
<tr>
<td>4. (\angle CDA) and (\angle CDB) are right angles</td>
<td>4. Definition of perpendicular</td>
</tr>
<tr>
<td>5. (\triangle CDA) and (\triangle CDB) are right triangles</td>
<td>5. Definition of right triangle</td>
</tr>
<tr>
<td>6. (\angle A \cong \angle B)</td>
<td>6. Isosceles Triangle Base Angle Theorem</td>
</tr>
<tr>
<td>7. (\triangle CDA \cong \triangle CDB)</td>
<td>7. HA Congruence Theorem</td>
</tr>
<tr>
<td>8. (\angle ACD \cong \angle BCD)</td>
<td>8. CPCTC</td>
</tr>
<tr>
<td>9. (CD) bisects (\angle ACB)</td>
<td>9. Definition of bisect</td>
</tr>
</tbody>
</table>
Guiding Questions for Share Phase, Questions 5 and 6

• What are the similarities among the Isosceles Triangle Base Theorem, the Isosceles Triangle Vertex Angle Theorem, and the Isosceles Triangle Perpendicular Bisector Theorem?
• What are the differences among the Isosceles Triangle Base Theorem, the Isosceles Triangle Vertex Angle Theorem, and the Isosceles Triangle Perpendicular Bisector Theorem?

The Isosceles Triangle Perpendicular Bisector Theorem states: “The altitude from the vertex angle of an isosceles triangle is the perpendicular bisector of the base.”

5. Draw and label a diagram you can use to help you prove the Isosceles Triangle Perpendicular Bisector Theorem. State the “Given” and “Prove” statements.

![Diagram of an isosceles triangle with CD as the altitude and bisector]

Given: Isosceles \(\triangle ABC \) with \(CA \cong CB \)
Prove: \(CD \) is the perpendicular bisector of \(AB \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (CA \cong CB)</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. (CD) is an altitude</td>
<td>2. Construction</td>
</tr>
<tr>
<td>3. (CD \perp AB)</td>
<td>3. Definition of altitude</td>
</tr>
<tr>
<td>4. (AD \cong BD)</td>
<td>4. Isosceles Triangle Base Theorem</td>
</tr>
<tr>
<td>5. (CD) bisects (AB)</td>
<td>5. Definition of bisect</td>
</tr>
<tr>
<td>6. (CD) is the perpendicular bisector of (AB)</td>
<td>6. Definition of perpendicular bisector</td>
</tr>
</tbody>
</table>
Problem 2
Students use a two-column proof to prove the Isosceles Triangle Altitude to Congruent Sides Theorem which states: “In an isosceles triangle, the altitudes to the congruent sides are congruent” and the Isosceles Triangle Angle Bisector to Congruent Sides Theorem which states: “In an isosceles triangle, the angle bisectors to the congruent sides are congruent.”

Grouping
Have students complete Questions 1 through 4 with a partner. Then have students share their responses as a class.

Guiding Questions for Share Phase, Questions 1 and 2
• How would you reword the theorems as conditional statements?
• What is the hypothesis or given information?
• What is the conclusion or prove statement?
• Do the two triangles share a common side or angle?

2. Prove the Isosceles Triangle Altitude to Congruent Sides Theorem.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $AB \cong AC$</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. CD and BE are altitudes</td>
<td>2. Given</td>
</tr>
<tr>
<td>3. $CD \perp AB$ and $BE \perp AC$</td>
<td>3. Definition of altitude</td>
</tr>
<tr>
<td>4. $\angle CDB$ and $\angle BEC$ are right angles</td>
<td>4. Definition of perpendicular</td>
</tr>
<tr>
<td>5. $\triangle CDB$ and $\triangle BEC$ are right triangles</td>
<td>5. Definition of right triangle</td>
</tr>
<tr>
<td>6. $\triangle ABC \cong \triangle ACB$</td>
<td>6. Isosceles Triangle Base Angle Theorem</td>
</tr>
<tr>
<td>7. $BC \cong BC$</td>
<td>7. Reflexive Property of Congruence</td>
</tr>
<tr>
<td>8. $\triangle CDB \cong \triangle BEC$</td>
<td>8. HA</td>
</tr>
<tr>
<td>9. $CD \cong BE$</td>
<td>9. CPCTC</td>
</tr>
</tbody>
</table>
Guiding Questions for Share Phase, Questions 3 and 4

- Which congruence theorems are helpful when proving this theorem?
- How can CPCTC be helpful when proving this theorem?
- Is it helpful creating a paragraph proof before creating a two-column proof? Why or why not?

The **Isosceles Triangle Angle Bisector to Congruent Sides Theorem** states: “In an isosceles triangle, the angle bisectors to the congruent sides are congruent.”

3. Draw and label a diagram you can use to help you prove this theorem. State the “Given” and “Prove” statements.

4. Prove the Isosceles Triangle Angle Bisector to Congruent Sides Theorem.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $AB = AC$</td>
<td>1. Given</td>
</tr>
<tr>
<td>2. BE bisects $\angle ABC$</td>
<td>2. Given</td>
</tr>
<tr>
<td>3. $\angle ABE = \angle EBC$</td>
<td>3. Definition of angle bisector</td>
</tr>
<tr>
<td>4. CD bisects $\angle ACB$</td>
<td>4. Given</td>
</tr>
<tr>
<td>5. $\angle ACD = \angle DCB$</td>
<td>5. Definition of angle bisector</td>
</tr>
<tr>
<td>6. $\angle ABC = \angle ACB$</td>
<td>6. Isosceles Triangle Base Angle Theorem</td>
</tr>
<tr>
<td>7. $BC = BC$</td>
<td>7. Reflexive Property of Congruence</td>
</tr>
<tr>
<td>8. $\triangle CDB \cong \triangle BEC$</td>
<td>8. ASA</td>
</tr>
<tr>
<td>9. $CD = BE$</td>
<td>9. CPCTC</td>
</tr>
</tbody>
</table>

Given: $\triangle ABC$ is isosceles with $AB = AC$, BE bisects $\angle ABC$, CD bisects $\angle ACB$

Prove: $CD \cong BE$
Talk the Talk

Students use the theorems in this lesson to answer questions.

Grouping

Have students complete Questions 1 through 4 with a partner. Then have students share their responses as a class.

1. Solve for the width of the dog house.

\[
\begin{align*}
CD & \perp AB \\
AC & = BC \\
CD & = 12'' \\
AC & = 20'' \\
AD^2 + 12^2 & = 20^2 \\
AD^2 + 144 & = 400 \\
AD^2 & = 256 \\
AD & = \sqrt{256} = 16''
\end{align*}
\]

The width of the dog house is 32 inches.

Use the theorems you have just proven to answer each question about isosceles triangles.

2. What can you conclude about an altitude drawn from the vertex angle to the base?

I can conclude that the altitude bisects the vertex angle, and is the perpendicular bisector of the base.

3. What can you conclude about the altitudes to the congruent sides?

I can conclude that the altitudes drawn to the congruent sides are congruent.

4. What can you conclude about the angle bisectors to the congruent sides?

I can conclude that the angle bisectors drawn to the congruent sides are congruent.

Be prepared to share your solutions and methods.
Check for Students’ Understanding

Design a problem about this barn using one or more theorems from this lesson. Give the problem to your partner and ask them to solve it.

Answers will vary.

Given: \(\triangle BAR \) is isosceles with \(\overline{AB} \cong \overline{AR} \)
- \(\overline{AN} \) is an altitude
- \(AB = 16 \) feet
- \(AN = 10 \) feet

Determine the width of the barn.

\[
16^2 = 10^2 + BN^2
\]
\[
BN^2 = 256 - 100
\]
\[
BN^2 = 156
\]
\[
BN = \sqrt{156} \approx 12.5 \text{ feet}
\]

The width of the barn is approximately \(2(12.5) = 25.2 \) feet.
8.4 Making Some Assumptions

Inverse, Contrapositive, Direct Proof, and Indirect Proof

Learning Goals

In this lesson, you will:

- Write the inverse and contrapositive of a conditional statement.
- Differentiate between direct and indirect proof.
- Use indirect proof.

Essential Ideas

- When using a conditional statement in the form "If \(p \), then \(q \)”, to state the converse, you reverse the hypothesis, \(p \), and the conclusion, \(q \). To state the inverse, you negate both parts. To state the contrapositive, you reverse and negate each part.
- An indirect proof, or proof by contradiction, uses the contrapositive by assuming the conclusion is false and then showing that one of the statements must be false.
- The Hinge Theorem states: “If two sides of one triangle are congruent to two sides of another triangle and the included angle of the first is larger than the included angle of the second, then the third side of the first is longer than the third side of the second.”
- The Hinge Converse Theorem states: “If two sides of one triangle are congruent to two sides of another triangle and the third side of the first is longer than the third side of the second, then the included angle of the first is larger than the included angle of the second.”

Key Terms

- inverse
- contrapositive
- direct proof
- indirect proof or proof by contradiction
- Hinge Theorem
- Hinge Converse Theorem

Texas Essential Knowledge and Skills for Mathematics

(4) Logical argument and constructions. The student uses the process skills with deductive reasoning to understand geometric relationships. The student is expected to:

(D) compare geometric relationships between Euclidean and spherical geometries, including parallel lines and the sum of the angles in a triangle

(5) Logical argument and constructions. The student uses constructions to validate conjectures about geometric figures. The student is expected to:

(D) verify the Triangle Inequality theorem using constructions and apply the theorem to solve problems
Overview

Students analyze conditional statements and write their inverses and contrapositives. Proof by contradiction, or indirect proof, is introduced and contrasted with direct proof. Students prove the Hinge Theorem and its converse using indirect proof.
Warm Up

1. Use a ruler and protractor to redraw this triangle increasing the 7 cm side to 10 cm.

2. How did increasing the length of the side affect the measure of the third angle?
 Lengthening the side had no effect on the measure of the opposite angle.

3. How did increasing the length of the side affect the length of the other two sides?
 Lengthening the side caused the other two sides to increase in length.

4. Is the triangle you drew similar to the original triangle? Explain.
 The two triangles are similar by the AA Similarity Postulate.

5. Use a ruler and protractor to draw a triangle that has two sides with the measure of 3 cm and 10 cm and an included angle with the measure of 70°.

6. Use a ruler and protractor to draw a triangle that has two sides with the measure of 3 cm and 10 cm and an included angle with the measure of 50°.
7. Without measuring, can you predict which triangle in Questions 5 and 6 have the longest third side? Explain your reasoning.

The third side in the triangle in Question 5 has the longest side. The angle determining the length of the third side in Question 5 is greater than the angle determining the length of the third side in Question 6. Therefore, the side opposite the greater angle is longer.

8. Use a ruler to measure the third sides. Is your prediction correct?

Yes, my prediction is correct.
The Greek philosopher Aristotle greatly influenced our understanding of physics, linguistics, politics, and science. He also had a great influence on our understanding of logic. In fact, he is often credited with the earliest study of formal logic, and he wrote six works on logic which were compiled into a collection known as the *Organon*. These works were used for many years after his death. There were a number of philosophers who believed that these works of Aristotle were so complete that there was nothing else to discuss regarding logic. These beliefs lasted until the 19th century when philosophers and mathematicians began thinking of logic in more mathematical terms.

Aristotle also wrote another book, *Metaphysics*, in which he makes the following statement: “To say of what is that it is not, or of what is not that it is, is falsehood, while to say of what is that it is, and of what is not that it is not, is truth.”

What is Aristotle trying to say here, and do you agree? Can you prove or disprove this statement?
Problem 1

The converse, inverse, and the contrapositive of a conditional statement are defined. Students use several conditional statements to write the converse, inverse, and contrapositive. They conclude that when the conditional statement is true, the inverse may be true or false and the contrapositive is always true. When the conditional statement is false, the inverse may be true or false and the contrapositive is always false.

ELL Tip

Have students work in small groups to look through the text to identify and share past examples of hypotheses and conclusions. Have each student in the group take turns answering parts (c) through (i) for their hypotheses and corresponding conclusions. Encourage students to color-code the original hypotheses in one color and the conclusions in another to see how they look in the structure of inverses and contrapositives.

Grouping

- Ask a student to read aloud the information. Discuss as a class.

Guiding Questions for Share Phase, Question 1

- What is a square?
- What is a rectangle?
- Are all squares considered rectangles? Why or why not?
- Are all rectangles considered squares? Why or why not?
Guiding Questions for Share Phase, Question 2

- What is an integer?
- Is zero an integer?
- Is zero considered even or odd?
- What are even integers?
- Are all even integers divisible by two? Why or why not?

1. If a quadrilateral is a square, then the quadrilateral is a rectangle.
 a. Hypothesis \(p \):
 A quadrilateral is a square.
 b. Conclusion \(q \):
 The quadrilateral is a rectangle.
 c. Is the conditional statement true? Explain your reasoning.
 The conditional statement is true. All squares are also rectangles.
 d. Not \(p \):
 A quadrilateral is not a square.
 e. Not \(q \):
 The quadrilateral is not a rectangle.
 f. Inverse:
 If a quadrilateral is not a square, then the quadrilateral is not a rectangle.
 g. Is the inverse true? Explain your reasoning.
 The inverse is false. A quadrilateral that is not a square could still be a rectangle.
 h. Contrapositive:
 If a quadrilateral is not a rectangle, then the quadrilateral is not a square.
 i. Is the contrapositive true? Explain your reasoning.
 The contrapositive is true. All squares are rectangles, so if the quadrilateral is not a rectangle, then it cannot be a square.
Guiding Questions for Share Phase, Question 3

- What is a five-sided polygon called?
- What is a six-sided polygon called?

2. If an integer is even, then the integer is divisible by two.
 a. Hypothesis \(p \):
 An integer is even.
 b. Conclusion \(q \):
 The integer is divisible by two.
 c. Is the conditional statement true? Explain your reasoning.
 The conditional statement is true. All even integers are divisible by two.
 d. Not \(p \):
 An integer is not even.
 e. Not \(q \):
 The integer is not divisible by two.
 f. Inverse:
 If an integer is not even, then the integer is not divisible by two.
 g. Is the inverse true? Explain your reasoning.
 The inverse is true. If an integer is not even, then it is odd and odd integers are not divisible by two.
 h. Contrapositive:
 If an integer is not divisible by two, then the integer is not even.
 i. Is the contrapositive true? Explain your reasoning.
 The contrapositive is true. If an integer is not divisible by two, then it is odd, and an odd integer is not even.
Guiding Questions for Share Phase, Questions 4 through 6

- When the conditional statement was true, was the inverse always true?
- When the conditional statement was false, was the inverse always false?
- When the conditional statement was true, was the contrapositive always true?
- When the conditional statement was false, was the contrapositive always false?

3. If a polygon has six sides, then the polygon is a pentagon.
 a. Hypothesis \(p \):
 A polygon has six sides.
 b. Conclusion \(q \):
 The polygon is a pentagon.
 c. Is the conditional statement true? Explain your reasoning.
 The conditional statement is false. A polygon with six sides is a hexagon.
 d. Not \(p \):
 A polygon does not have six sides.
 e. Not \(q \):
 The polygon is not a hexagon.
 f. Inverse:
 If a polygon does not have six sides, then the polygon is not a hexagon.
 g. Is the inverse true? Explain your reasoning.
 The inverse is false. A polygon that does not have six sides could have five sides, which would make it a pentagon.
 h. Contrapositive:
 If a polygon is not a hexagon, then the polygon does not have six sides.
 i. Is the contrapositive true? Explain your reasoning.
 The contrapositive is false. A polygon that is not a pentagon could be a hexagon, which would have six sides.
Problem 2

Students are introduced to an indirect proof, or proof by contradiction, which uses the contrapositive by assuming the conclusion is false. Begin all indirect proofs by assuming the conclusion is false. Use the givens to arrive at a contradiction, thus completing the proof. An example of an indirect proof is provided. Students create two indirect proofs.

Grouping
• Discuss the information and worked example as a class.
• Have students complete Questions 1 and 2 with a partner. Then have students share their responses as a class.

Note
The example of a two-column indirect proof can be used for a focused classroom discussion. Asking students to describe the differences and similarities between direct and indirect proof is a good place to start the discussion. Share with students that when a “not” statement appears in the problem set up, that is often viewed as a hint to use an indirect proof model.

4. If two lines intersect, then the lines are perpendicular.
 a. Hypothesis p:
 Two lines intersect.
 b. Conclusion q:
 The lines are perpendicular.
 c. Is the conditional statement true? Explain your reasoning.
 The conditional statement is false. Not all intersecting lines are perpendicular.
 d. Not p:
 Two lines do not intersect.
 e. Not q:
 The lines are not perpendicular.
 f. Inverse:
 If two lines do not intersect, then the lines are not perpendicular.
 g. Is the inverse true? Explain your reasoning.
 The inverse is true. Two lines that do not intersect cannot be perpendicular.
 h. Contrapositive:
 If two lines are not perpendicular, then the lines do not intersect.
 i. Is the contrapositive true? Explain your reasoning.
 The contrapositive is false. Two lines that are not perpendicular could intersect.

5. What do you notice about the truth value of a conditional statement and the truth value of its inverse?
 If a conditional statement is true, then its inverse may be either true or false. If a conditional statement is false, then its inverse may be either true or false.

6. What do you notice about the truth value of a conditional statement and the truth value of its contrapositive?
 If a conditional statement is true, then its contrapositive is true. If a conditional statement is false, then its contrapositive is also false.

ELL Tip
As a class discuss the meaning of making assumptions and identifying contradictions in their everyday lives. Ask students to give real life examples and then relate how identifying a contradiction to an assumption disproves it. Be patient and encouraging. Let students express themselves.
Guiding Questions for Share Phase, Questions 1 and 2

- What is the negation of the conclusion or the assumption?
- Do the triangles share a common side or common angle?
- What theorem is helpful in proving the triangles congruent?
- Which given statement will help arrive at a contradiction?
- Which corresponding part will contradict a given statement?
- Which corresponding parts will help arrive at a contradiction?

PROBLEM 2 Proof by Contradiction

All of the proofs up to this point were direct proofs. A direct proof begins with the given information and works to the desired conclusion directly through the use of givens, definitions, properties, postulates, and theorems.

An indirect proof, or proof by contradiction, uses the contrapositive. If you prove the contrapositive true, then the original conditional statement is true. Begin by assuming the conclusion is false, and use this assumption to show one of the given statements is false, thereby creating a contradiction.

Let's look at an example of an indirect proof.

Given: In \(\triangle CHT \), \(\overline{CH} \parallel \overline{CT} \), \(\overline{CA} \) does not bisect \(\overline{HT} \).

Prove: \(\triangle CHT \neq \triangle CTA \).

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\triangle CHT \neq \triangle CTA)</td>
<td>1. Assumption</td>
</tr>
<tr>
<td>2. (\overline{CA}) does not bisect (\overline{HT})</td>
<td>2. Given</td>
</tr>
<tr>
<td>3. (\overline{HA} = \overline{TA})</td>
<td>3. CPCTC</td>
</tr>
<tr>
<td>4. (\overline{CA}) bisects (\overline{HT})</td>
<td>4. Definition of bisect</td>
</tr>
<tr>
<td>5. (\triangle CHT \neq \triangle CTA) is false</td>
<td>5. This is a contradiction. Step 4 contradicts step 2; the assumption is false</td>
</tr>
<tr>
<td>6. (\triangle CHT \neq \triangle CTA) is true</td>
<td>6. Proof by contradiction</td>
</tr>
</tbody>
</table>

In step 5, the “assumption” is stated as “false.” The reason for making this statement is “assumption.”

In an indirect proof:

- State the assumption; use the negation of the conclusion, or “Prove” statement.
- Write the givens.
- Write the negation of the conclusion.
- Use the assumption, in conjunction with definitions, properties, postulates, and theorems, to prove a given statement is false, thus creating a contradiction.

Hence, your assumption leads to a contradiction; therefore, the assumption must be false. This proves the contrapositive.
Problem 3
Students prove the Hinge Theorem and the Hinge Converse Theorem using two-column indirect proofs. To prove one angle measure is less than a second angle measure, two cases must be proven. It must be proven that the first angle is not congruent to the second angle and the first angle measure is not greater than the second angle measure. Each proof requires two cases.

Grouping
• Ask a student to read aloud the information. Discuss as a class.
• Have students complete Question 1 with a partner. Then have students share their responses as a class.

1. Create an indirect proof of the following.
 Given: BR bisects $\angle ABN$,
 $\angle BRA \neq \angle BRN$
 Prove: $AB \neq NB$

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $AB = NB$</td>
<td>1. Assumption</td>
</tr>
<tr>
<td>2. BR bisects $\angle ABN$</td>
<td>2. Given</td>
</tr>
<tr>
<td>3. $\angle ABR = \angle NBR$</td>
<td>3. Definition of angle bisector</td>
</tr>
<tr>
<td>4. $BR = BR$</td>
<td>4. Reflexive Property of Congruence</td>
</tr>
<tr>
<td>5. $\triangle ABR \cong \triangle NBR$</td>
<td>5. SAS</td>
</tr>
<tr>
<td>6. $\angle BRA = \angle BRN$</td>
<td>6. CPCTC</td>
</tr>
<tr>
<td>7. $\angle BRA = \angle BRN$</td>
<td>7. Given</td>
</tr>
<tr>
<td>8. $AB = NB$ is false</td>
<td>8. This is a contradiction. Step 7 contradicts step 6; the assumption is false</td>
</tr>
<tr>
<td>9. $AB = NB$ is true</td>
<td>9. Proof by contradiction</td>
</tr>
</tbody>
</table>

2. Create an indirect proof to show that a triangle cannot have more than one right angle.
 Given $\triangle ABC$. Begin by assuming $\triangle ABC$ has two right angles ($m\angle A = 90^\circ$ and $m\angle B = 90^\circ$). By the Triangle Sum Theorem, $m\angle A + m\angle B + m\angle C = 180^\circ$.
 By substitution, $90^\circ + 90^\circ + m\angle C = 180^\circ$, so by subtraction, $m\angle C = 0^\circ$, which contradicts the given, $\triangle ABC$ is a triangle.
Guiding Questions for Share Phase, Question 1

- What is the negation of the conclusion or the assumption?
- Do the triangles share a common side or common angle?
- What theorem is helpful in proving the triangles congruent?
- Which given statement will help arrive at a contradiction?
- Which corresponding part will contradict a given statement?
- Which corresponding parts will help arrive at a contradiction?
- In the second case, what can be concluded using the Triangle Inequality Theorem?
- How is the Triangle Inequality Theorem used to arrive at a contradiction?

PROBLEM 3 Hinge Theorem and Its Converse

The Hinge Theorem states: “If two sides of one triangle are congruent to two sides of another triangle, and the included angle of the first pair is larger than the included angle of the second pair, then the third side of the first triangle is longer than the third side of the second triangle.”

In the two triangles shown, notice that \(RS = DE \), \(ST = EF \), and \(\angle S > \angle E \). The Hinge Theorem says that \(RT > DF \).

1. Use an indirect proof to prove the Hinge Theorem.

Given: \(AB = DE \)
 \(AC = DF \)
 \(m\angle A > m\angle D \)

Prove: \(BC > EF \)

Negating the conclusion, \(BC > EF \), means that either \(BC \) is equal to \(EF \), or \(BC \) is less than \(EF \). Therefore, this theorem must be proven for both cases.

Case 1: \(BC = EF \)
Case 2: \(BC < EF \)
Grouping

- Ask a student to read aloud the information. Discuss as a class.
- Have students complete Question 2 with a partner. Then have students share their responses as a class.

a. Write the indirect proof for Case 1, \(BC = EF \).

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (BC \geq EF), so (BC = EF)</td>
<td>1. Assumption</td>
</tr>
<tr>
<td>2. (AB = DE)</td>
<td>2. Given</td>
</tr>
<tr>
<td>3. (AC = DF)</td>
<td>3. Given</td>
</tr>
<tr>
<td>4. (\triangle ABC \cong \triangle DEF)</td>
<td>4. SSS Congruency Theorem</td>
</tr>
<tr>
<td>5. (\angle A = \angle D)</td>
<td>5. CPCTC</td>
</tr>
<tr>
<td>6. (m\angle A > m\angle D)</td>
<td>6. Given</td>
</tr>
<tr>
<td>7. (BC = EF) is false</td>
<td>7. This is a contradiction. Step 6 contradicts step 5; the assumption is false</td>
</tr>
<tr>
<td>8. (BC > EF) is true</td>
<td>8. Proof by contradiction</td>
</tr>
</tbody>
</table>

b. Write the indirect proof for Case 2, \(BC < EF \).

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (BC > EF), so (BC < EF)</td>
<td>1. Assumption</td>
</tr>
<tr>
<td>2. (AB = DE)</td>
<td>2. Given</td>
</tr>
<tr>
<td>3. (AC = DF)</td>
<td>3. Given</td>
</tr>
<tr>
<td>4. (\angle A < \angle D)</td>
<td>4. Triangle Inequality Theorem</td>
</tr>
<tr>
<td>5. (\angle A > \angle D)</td>
<td>5. Given</td>
</tr>
<tr>
<td>6. (BC < EF) is false</td>
<td>6. This is a contradiction. Step 5 contradicts step 4; the assumption is false</td>
</tr>
<tr>
<td>7. (BC > EF) is true</td>
<td>7. Proof by contradiction</td>
</tr>
</tbody>
</table>
Guiding Questions for Share Phase, Question 2

- What is the negation of the conclusion or the assumption?
- Do the triangles share a common side or common angle?
- What theorem is helpful in proving the triangles congruent?
- Which given statement will help arrive at a contradiction?
- Which corresponding part will contradict a given statement?
- Which corresponding parts will help arrive at a contradiction?
- In the second case, what can be concluded using the Hinge Theorem?
- How is the Triangle Inequality Theorem used to arrive at a contradiction?

The Hinge Converse Theorem states: “If two sides of one triangle are congruent to two sides of another triangle and the third side of the first triangle is longer than the third side of the second triangle, then the included angle of the first pair of sides is larger than the included angle of the second pair of sides.”

In the two triangles shown, notice that $RT = DF$, $RS = DE$, and $ST > EF$. The Hinge Converse Theorem guarantees that $m\angle R > m\angle D$.

2. Create an indirect proof to prove the Hinge Converse Theorem.

Given: $AB = DE$
$AC = DF$
$BC > EF$

Prove: $m\angle A > m\angle D$

This theorem must be proven for two cases.
Case 1: $m\angle A = m\angle D$
Case 2: $m\angle A < m\angle D$
a. Create an indirect proof for Case 1, $m \angle A = m \angle D$.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\angle A \geq \angle D$ so $\angle A = \angle D$</td>
<td>1. Assumption</td>
</tr>
<tr>
<td>2. $AB = DE$</td>
<td>2. Given</td>
</tr>
<tr>
<td>3. $AC = DF$</td>
<td>3. Given</td>
</tr>
<tr>
<td>4. $\triangle ABC \cong \triangle DEF$</td>
<td>4. SAS Congruency Theorem</td>
</tr>
<tr>
<td>5. $BC = EF$</td>
<td>5. CPCTC</td>
</tr>
<tr>
<td>6. $BC > EF$</td>
<td>6. Given</td>
</tr>
<tr>
<td>7. $m \angle A = m \angle D$ is false</td>
<td>7. This is a contradiction. Step 6 contradicts step 5; the assumption is false</td>
</tr>
<tr>
<td>8. $m \angle A > m \angle D$ is true</td>
<td>8. Proof by contradiction</td>
</tr>
</tbody>
</table>

b. Create an indirect proof for Case 2, $m \angle A < m \angle D$.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $m \angle A > m \angle D$ so $m \angle A < m \angle D$</td>
<td>1. Assumption</td>
</tr>
<tr>
<td>2. $AB = DE$</td>
<td>2. Given</td>
</tr>
<tr>
<td>3. $AC = DF$</td>
<td>3. Given</td>
</tr>
<tr>
<td>4. $BC < EF$</td>
<td>4. Hinge Theorem</td>
</tr>
<tr>
<td>5. $BC > EF$</td>
<td>5. Given</td>
</tr>
<tr>
<td>6. $m \angle A < m \angle D$ is false</td>
<td>6. This is a contradiction. Step 5 contradicts step 4; the assumption is false</td>
</tr>
<tr>
<td>7. $m \angle A > m \angle D$ is true</td>
<td>7. Proof by contradiction</td>
</tr>
</tbody>
</table>
Problem 4
Student apply the Hinge Theorem to solve problems.

Grouping
Have students complete Questions 1 through 3 with a partner. Then have students share their responses as a class.

Guiding Questions for Share Phase, Question 1
- How does the Hinge Theorem apply to this situation?
- Can you use an alternate method or strategy to answer the question?

It All Hinges on Reason

1. Matthew and Jeremy’s families are going camping for the weekend. Before heading out of town, they decide to meet at Al’s Diner for breakfast. During breakfast, the boys try to decide which family will be further away from the diner “as the crow flies.” “As the crow flies” is an expression based on the fact that crows, generally fly straight to the nearest food supply.

Matthew’s family is driving 35 miles due north and taking an exit to travel an additional 15 miles northeast. Jeremy’s family is driving 35 miles due south and taking an exit to travel an additional 15 miles southwest. Use the diagram shown to determine which family is further from the diner. Explain your reasoning.

Because the included angle in the triangle representing Matthew’s distance from Al’s Diner is larger than the included angle in the triangle representing Jeremy’s distance from Al’s Diner, the direct distance from Al’s Diner to Matthew’s campsite is longer by the Hinge Theorem.
Guiding Questions for Share Phase, Questions 2 and 3

• How does the length AH compare to the length WP?
• Was the Hinge Theorem or the Hinge Converse Theorem helpful in determining the relationship between the length of AH and the length of WP?
• How does the measure of angle E compare to the measure of angle R?
• Was the Hinge Theorem or the Hinge Converse Theorem helpful in determining the relationship between the measure of angle E and the measure of angle R?

2. Which of the following is a possible length for AH: 20 cm, 21 cm, or 24 cm? Explain your choice.

![Diagram](image)

Because the included angle in $\triangle ARH$ is larger than the included angle in $\triangle WEP$, the third side \overline{AH} must be longer than \overline{WP} by the Hinge Theorem.

So, of the three choices, the only possible length for \overline{AH} is 24 cm.

3. Which of the following is a possible angle measure for $\angle ARH$: 54º, 55º, or 56º? Explain your choice.

![Diagram](image)

Because the third side in $\triangle ARH$ is longer than the third side in $\triangle WEP$, the included angle R must be larger than the included angle E by the Hinge Converse Theorem.

So, of the three choices, the only possible measure for angle R is 56º.

Be prepared to share your solutions and methods.
Explain how this picture of a hinge is related to the Hinge Theorem.

Consider a door held onto the door frame with a hinge similar to the one pictured. One plate on the hinge is screwed into the door and the second plate is screwed into the door frame. As the door opens, the plates move closer together. As the plates move closer together, the measure of the angle formed by the plates decreases. As the door closes, the plates move further apart, the distance between the plates increase and the measure of the angle formed by the two plates increases. The plates represent sides of a triangle and the angle formed by the plates is the included angle. As the measure of the angle increases, the door closes and the length of the side opposite the angle increases. As the measure of the angle decreases, the door opens and the length of the side opposite the angle decreases.
Chapter 8 Summary

8.1 Using the Hypotenuse-Leg (HL) Congruence Theorem

The Hypotenuse-Leg (HL) Congruence Theorem states: “If the hypotenuse and leg of one right triangle are congruent to the hypotenuse and leg of another right triangle, then the triangles are congruent.”

Example

\[BC \cong EF, \ AC \cong DF, \] and angles \(A \) and \(D \) are right angles, so \(\triangle ABC \cong \triangle DEF \).
8.1 Using the Leg-Leg (LL) Congruence Theorem

The Leg-Leg (LL) Congruence Theorem states: “If two legs of one right triangle are congruent to two legs of another right triangle, then the triangles are congruent.”

Example

\[XY \cong RS, \, XZ \cong RT, \text{ and angles } X \text{ and } R \text{ are right angles, so } \triangle XYZ \cong \triangle RST. \]

8.1 Using the Hypotenuse-Angle (HA) Congruence Theorem

The Hypotenuse-Angle (HA) Congruence Theorem states: “If the hypotenuse and an acute angle of one right triangle are congruent to the hypotenuse and acute angle of another right triangle, then the triangles are congruent.”

Example

\[KL \cong EF, \, \angle L \cong \angle F, \text{ and angles } J \text{ and } D \text{ are right angles, so } \triangle JKL \cong \triangle DEF. \]
8.1 Using the Leg-Angle (LA) Congruence Theorem

The Leg-Angle (LA) Congruence Theorem states: “If a leg and an acute angle of one right triangle are congruent to the leg and an acute angle of another right triangle, then the triangles are congruent.”

Example

\[\triangle GHJ \cong \triangle LMN \]

\[GN \equiv LN, \angle H \equiv \angle M, \text{ and angles } G \text{ and } L \text{ are right angles, so } \triangle GHJ \equiv \triangle LMN. \]

8.2 Using CPCTC to Solve a Problem

If two triangles are congruent, then each part of one triangle is congruent to the corresponding part of the other triangle. In other words, “corresponding parts of congruent triangles are congruent,” which is abbreviated CPCTC. To use CPCTC, first prove that two triangles are congruent.

Example

You want to determine the distance between two docks along a river. The docks are represented as points A and B in the diagram below. You place a marker at point X, because you know that the distance between points X and B is 26 feet. Then, you walk horizontally from point X and place a marker at point Y, which is 26 feet from point X. You measure the distance between points X and A to be 18 feet, and so you walk along the river bank 18 feet and place a marker at point Z. Finally, you measure the distance between Y and Z to be 35 feet.

From the diagram, segments XY and XB are congruent and segments XA and XZ are congruent. Also, angles YXZ and BXA are congruent by the Vertical Angles Congruence Theorem. So, by the Side-Angle-Side (SAS) Congruence Postulate, \(\triangle YXZ \cong \triangle BXA \). Because corresponding parts of congruent triangles are congruent (CPCTC), segment YZ must be congruent to segment BA. The length of segment YZ is 35 feet. So, the length of segment BA, or the distance between the docks, is 35 feet.
Using the Isosceles Triangle Base Angle Theorem

The Isosceles Triangle Base Angle Theorem states: “If two sides of a triangle are congruent, then the angles opposite these sides are congruent.”

Example

\[FH \equiv GH, \text{ so } \angle F \equiv \angle G, \text{ and the measure of angle } G \text{ is } 40^\circ. \]

Using the Isosceles Triangle Base Angle Converse Theorem

The Isosceles Triangle Base Angle Converse Theorem states: “If two angles of a triangle are congruent, then the sides opposite these angles are congruent.”

Example

\[\angle J \equiv \angle K, JL \equiv KL, \text{ and the length of side } KL \text{ is } 21 \text{ meters.} \]

Using the Isosceles Triangle Base Theorem

The Isosceles Triangle Base Theorem states: “The altitude to the base of an isosceles triangle bisects the base.”

Example

\[CD = AD, \text{ so } x = 75 \text{ feet.} \]
8.3 **Using the Isosceles Triangle Vertex Angle Theorem**

The Isosceles Triangle Base Theorem states: “The altitude to the base of an isosceles triangle bisects the vertex angle.”

Example

![Diagram of an isosceles triangle with an altitude drawn from the vertex to the base.]

\[m \angle FGJ = m \angle HGJ, \text{ so } x = 48^\circ. \]

8.3 **Using the Isosceles Triangle Perpendicular Bisector Theorem**

The Isosceles Triangle Perpendicular Bisector Theorem states: “The altitude from the vertex angle of an isosceles triangle is the perpendicular bisector of the base.”

Example

![Diagram of an isosceles triangle with a perpendicular bisector drawn from the vertex to the base.]

\[\overline{WY} \perp \overline{XZ} \text{ and } WZ = YZ \]
8.3 Using the Isosceles Triangle Altitude to Congruent Sides Theorem

The Isosceles Triangle Perpendicular Bisector Theorem states: “In an isosceles triangle, the altitudes to the congruent sides are congruent.”

Example

\[\overline{KN} \cong \overline{JM} \]

8.3 Using the Isosceles Triangle Bisector to Congruent Sides Theorem

The Isosceles Triangle Perpendicular Bisector Theorem states: “In an isosceles triangle, the angle bisectors to the congruent sides are congruent.”

Example

\[\overline{RW} \cong \overline{TV} \]

8.4 Stating the Inverse and Contrapositive of Conditional Statements

To state the inverse of a conditional statement, negate both the hypothesis and the conclusion. To state the contrapositive of a conditional statement, negate both the hypothesis and the conclusion and then reverse them.

Conditional Statement: If \(p \), then \(q \).

Inverse: If not \(p \), then not \(q \).

Contrapositive: If not \(q \), then not \(p \).

Example

Conditional Statement: If a triangle is equilateral, then it is isosceles.

Inverse: If a triangle is not equilateral, then it is not isosceles.

Contrapositive: If a triangle is not isosceles, then it is not equilateral.
8.4 Writing an Indirect Proof

In an indirect proof, or proof by contradiction, first write the givens. Then, write the negation of the conclusion. Then, use that assumption to prove a given statement is false, thus creating a contradiction. Hence, the assumption leads to a contradiction, therefore showing that the assumption is false. This proves the contrapositive.

Example

Given: Triangle $\triangle DEF$

Prove: A triangle cannot have more than one obtuse angle.

Given $\triangle DEF$, assume that $\triangle DEF$ has two obtuse angles. So, assume $\angle D = 91^\circ$ and $\angle E = 91^\circ$. By the Triangle Sum Theorem, $\angle D + \angle E + \angle F = 180^\circ$. By substitution, $91^\circ + 91^\circ + \angle F = 180^\circ$, and by subtraction, $\angle F = -2^\circ$. But it is not possible for a triangle to have a negative angle, so this is a contradiction. This proves that a triangle cannot have more than one obtuse angle.

8.4 Using the Hinge Theorem

The Hinge Theorem states: “If two sides of one triangle are congruent to two sides of another triangle and the included angle of the first pair is larger than the included angle of the second pair, then the third side of the first triangle is longer than the third side of the second triangle.”

Example

Given

$QR > GH$, so $x > 8$ millimeters.
8.4 Using the Hinge Converse Theorem

The Hinge Converse Theorem states: “If two sides of one triangle are congruent to two sides of another triangle and the third side of the first triangle is longer than the third side of the second triangle, then the included angle of the first pair of sides is larger than the included angle of the second pair of sides.”

Example

\[m \angle T > m \angle Z, \text{ so } x > 62^\circ. \]